# Λ\*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set

*Zhiwen Zhao* NSTAR 2011 2011/05/19

- Physics motivation
- Data analysis
- Results
- Summary



## **Physics Motivation**

 $\Lambda(1520)$ Mass m = 1519.5 ± 1.0 MeV I(J<sup>P</sup>) = 0( $3/2^{-}$ ) Full width Γ = 15.6±1.0 MeV



- Its production mechanism is poorly understood due to lack of data.
- Existing data suggest dominance of t-channel processes and K, K\* exchange.
- Several model predictions for total and differential cross sections are available.
- Measurement of cross section and decay angular distribution can provide constraints on model prediction and insights into the production mechanism.
- Possible missing N\* resonances may decay through strange channels.

### **Published Experiment**

### 1. on *Proton*

| photoproduction measure         | ements              |        |  |  |
|---------------------------------|---------------------|--------|--|--|
| [1] A. Boyarski <i>et al</i> ., | (LAMP2, Daresbury), | (1971) |  |  |
| [2] D. Barber <i>et al.</i> ,   | (SLAC),             | (1980) |  |  |
| [3] N. Muramatsu et al.,        | (LEPS),             | (2009) |  |  |
| [4] H. Kohri et al.,            | (LEPS),             | (2010) |  |  |
| [5] F. W. Wieland et al.,       | (SAPHIR),           | (2010) |  |  |
| electroproduction measurements  |                     |        |  |  |
| [5] T. Azemoon et al.,          | (DESY),             | (1975) |  |  |
| [6] S. P. Barrow <i>et al.</i>  | (CLAS, JLab),       | (2001) |  |  |
| [7] Y. Qiang et al.             | (Hall-A, JLab),     | (2010) |  |  |
| 2. on <i>Neutron</i>            |                     |        |  |  |
| photoproduction measurements    |                     |        |  |  |
| [3] N. Muramatsu et al.,        | (LEPS),             | (2009) |  |  |
| <b>Published Theory</b>         |                     |        |  |  |

S. Nam et al. Phys. Rev. D, 71, 114012 (2005)
S. Nam et al. Phys. Rev. D, 75, 014027 (2007)
S. Nam et al. Phys. Rev. C, 81, 055206 (2010)
A. Titov et al. Phys. Rev. C, 72, 035206 (2005)

## Cross Section photoproduction

#### **Comparing** *Proton* results between data and theory





## Cross Section photoproduction

### LEPS Results

- Show both forward and backward angle differential cross sections on *Proton*.
- Enhancement close to threshold is interpreted as a resonance structure.
- Very small cross sections on *Neutron* from indirect measurement.





# Decay Angle photoproduction

Gottfried-Jackson frame

Decay angle distribution

m - 3/2



$$\begin{array}{ll} \mathbf{m_{z}=1/2} & \mathbf{m_{z}=3/2} & \text{interference} \\ f(\theta_{K^{-}}^{GJ}) = \alpha \left(\frac{1}{3} + \cos^{2}\theta_{K^{-}}^{GJ}\right) + \beta \left(1 - \cos^{2}\theta_{K^{-}}^{GJ}\right) + \gamma \left(\cos\theta_{K^{-}}^{GJ}\right) \end{array}$$

| $\Lambda^*  J^P = 3/2 -$                | m <sub>z</sub> =1/2 | m <sub>z</sub> =3/2 | β/α |
|-----------------------------------------|---------------------|---------------------|-----|
| N(1/2 <sup>+</sup> )K (0 <sup>-</sup> ) | Y                   | N                   | 0   |
| N(1/2 +) K*(1 -)                        | Y                   | Y                   | 3/1 |

Decay angle distribution is related to production mechanism.



interference

## Decay Angle photoproduction



S. Nam et al. Phys. Rev. C, 81, 055206 (2010)

## **Reaction Channels**

#### deuteron target



 $\begin{array}{ll} \gamma p(n) \rightarrow \mathrm{K}^{+} \, \Lambda^{*} \, (n) & Proton \\ \gamma n(p) \rightarrow \mathrm{K}^{0} \, \Lambda^{*} \, (p) & Neutron \\ & (\Lambda^{*} \rightarrow p \, \mathrm{K}^{-} \, , \, \mathrm{K}^{0} \rightarrow \mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-} \, ) \end{array}$ 

### eg3 run

- Photon beam
- Target
- TriggerTagger
- Torus field
- Run period
- Data

electron beam 5.77 GeV, tagged photon energy 1.15 < E < 5.5 GeV, 30 nA 40 cm upstream, LD<sup>2</sup>

- 4.5 < E < 5.5 GeV, STxTOF (3 sectors and prescaled 2 sectors)
- optimized to -1980 A, negative charged particles outbending
- 12/06/2004 01/31/2005, 29 days of production on LD<sup>2</sup> target
- 4.2 billion physics events, 32 TB raw data, average 2.7 tracks/event

# Correction and Cuts Applied

| Correction and cut name                 | experiment | simulation |
|-----------------------------------------|------------|------------|
| Beam trip cut                           | Y          | Ν          |
| Eloss correction                        | Y          | Y          |
| Momentum correction                     | Y          | Ν          |
| Photon energy correction                | Y          | Ν          |
| Fiducial cut                            | Y          | Y          |
| SC occupancy cut                        | Y          | Y          |
| DC wire efficiency correction           | Ν          | Y          |
| Untriggered tagger T-counter correction | Y          | Ν          |
| Trigger efficiency correction           | Y          | Ν          |
| Trigger condition cut                   | Y          | Y          |
| Vertex Z cut                            | Y          | Y          |
| Momentum cut                            | Y          | Y          |

## Invariant Mass of pK<sup>-</sup>

#### **Proton**

### Neutron





## Invariant Mass of K<sup>+</sup>K<sup>-</sup>





## Invariant Mass of K<sup>+</sup>K<sup>-</sup>

 $E_{\gamma} < 2.25 \text{ GeV}$ 



# eroton Kinematic Distribution

 $1.5 < {E_\gamma} < 5.5~GeV$  16 bins, bin width 250 MeV

 $0.25 < t^* = -(t-t_0) < 2.5 \text{ GeV}^2$ 6 bins, bin width varies



## **Kinematic Distribution**

 $1.5 < E_{\gamma} < 5.5 \text{ GeV}$ 6 bins, bin width varies  $0.0 < t^* = -(t-t_0) < 2.5 \text{ GeV}^2$ 6 bins, bin width varies



## Preliminary Differential Cross Section

do/dt\*

- $1.5 < E_g < 5.5 \text{ GeV}$ 16 bins, bin width 250 MeV
- Fit with function of  $\alpha e^{-\beta t^*}$
- Extrapolate the function and integrate over t\* to obtain total cross sections



t\* (GeV²)

### Preliminary Differential Cross Section

do/dt\*

•  $1.5 < E_g < 5.5 \text{ GeV}$ 6 bins, bin width varies.

• Fit with function of  $\alpha e^{-\beta t^*}$ 

• Extrapolate the function and integrate over t\* to obtain total cross sections



t\* (GeV

Preliminary t-slope



# Total Cross Section



# eroton Kinematic Distribution

 $1.5 < \frac{E_{\gamma}}{2} < 5.5~GeV$  16 bins, bin width 250 MeV

 $40 < \theta_{\rm K}^{\rm CM} < 120^{\rm o}$ 6 bins, bin width varies



## Kinematic Distribution

 $1.5 < \frac{E_{\gamma}}{6} < 5.5 \text{ GeV}$ 6 bins, bin width varies  $30 < \theta_{\rm K}^{\rm CM} < 120^{\circ}$ 6 bins, bin width varies



### Preliminary Differential Cross Section

 $d\sigma/d\theta_{\rm K}^{\rm CM}$ 

•  $40^{\circ} < \theta_{K}^{CM} < 120^{\circ}$ 6 bins, bin width varies

• No sign of resonance structure within the statistics





### Preliminary Differential Cross Section

 $d\sigma/d\theta_{\rm K}^{\rm CM}$ 

•  $20^{\circ} < \theta_{K}^{CM} < 120^{\circ}$ 6 bins, bin width varies

• No sign of resonance structure within the statistics



E<sub>v</sub> (Ge



γ

cosθ<sub>κ</sub>-GJ

# Decay Angle Distribution

 $d\sigma/dcos\theta_{\rm K}^{-{\rm GJ}}$ 

- $1.5 < E_g < 5.5$  GeV 6 bins, bin width varies
- Mixture of K and K\* exchange





cosθ<sub>K</sub>-GJ

## Preliminary Decay Angle Distribution

 $d\sigma/dcos\theta_{\rm K}$ -GJ

Mixture of K and K\* exchange





cosθ<sub>κ</sub>-<sup>GJ</sup>

П

C

Ö

Ò

Π

G

25

# Decay Angle Distribution

 $d\sigma/dcos\theta_{\rm K}$ -GJ

Mixture of K and K\* exchange





cosθ<sub>κ</sub>-GJ

П

4

Ň

62

6

ŰЛ

m

G

## Summary

- The A\*(1520) differential and total cross sections up to 5.5 GeV on *Proton* are extracted. The total cross section is in good agreement with the world data.
- The A\*(1520) differential and total cross sections on *Neutron* are obtained for the first time. The cross section is about 70% of the proton channel result, which is much larger than what the theory predicted.
- There is no sign of resonance structures at the covered forward kaon angles.
- A\*(1520) decay angle distributions in Gottfried-Jackson frame show complicated structures indicating that both K and K\* exchanges contribute to the two reaction channels.

## Backup

## Existing Data electroproduction

- Electroproduction of  $\Lambda^*$  off *Proton* has been studied at DESY and CLAS
- CLAS data (S. Barrow, e1c) showed
  - Dominance of t-channel process confirmed
  - Decay angular distribution showed significant contribution from  $m_z=\pm 1/2$  spin projection



## **Photon Selection**

#### vertex time diff (ns)



#### vertex and tagger time diff (ns)



π<sup>-</sup> Mom(GeV)

20

## **Event Selection**



## **Event Selection**





## **Missing Nucleon Mass**







## **Missing Nucleon Mass**



## **Missing Nucleon Momentum**



# eroton Kinematic Distribution

 $1.5 < E_{\gamma} < 5.5~GeV$  16 bins, bin width 250 MeV

 $-0.8 < \cos\theta_{\rm K}$ -<sup>GJ</sup> < 0.96 bins, bin width varies



## Kinematic Distribution

 $1.5 < E_{\gamma} < 5.5 \text{ GeV}$ 6 bins, bin width varies  $-0.8 < \cos\theta_{\rm K}$  -GJ < 0.96 bins, bin width varies



# Yield Extraction (data)



roton

#### $0.25 < t^* = -(t-t_0) < 3.0 \text{ GeV}^2$ 6 bins, bin width varies



 $1.5 < E_{\gamma} < 5.5 \text{ GeV}$ 16 bins, bin width 250 MeV

M(pK<sup>-</sup>) (GeV)

# Yield Extraction (data)

InvM\_pkm\_PrtK0Km\_E\_0

mill.phm.PrtKiKm\_E\_0

1.57



#### $0.0 < t^* = -(t-t_0) < 3.0 \text{ GeV}^2$ 6 bins, bin width varies

0.0616 0.0701 79.01/3 75.41/3 41.36/3 91,66 / 2 .889 ± 0.16 2.147 ± 0.17  $1.52\pm0.0$ 1.52 ± 0.0 1.52 ± 0.0 1.519 ± 0.00 8200 ± 1068. -2584 : 345. 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.4 1.45 1.5 1.55 1.6 1.65 1.7 InvM\_pkm\_PrtK0Km\_E\_4 InvM\_pkm\_PrtK0Km\_E\_5 65 69 17 1.519 ± 0.00 1169 ÷ 2 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.4 1.45 1.5 1.55 1.6 1.65 1.7

 $1.5 < E_{\gamma} < 5.5 \text{ GeV}$ 6 bins, bin width varies



Intelligion\_Profilien\_E\_

1.50

InvM\_pkm\_PrtK0Km\_E\_2

IniN\_plm\_PrtKlKm\_E\_

InvM\_pkm\_PrtK0Km\_E\_3

M(pK<sup>-</sup>) (GeV)

ImM\_pkm\_PrtSBKm\_E\_3

InvM\_pkm\_PrtK0Km\_E\_1

## **Yield and Acceptance**



## **Yield and Acceptance**



## SAPHIR



Fig. 13. (a) Total cross section for the reaction  $\gamma p \rightarrow K^+ \Lambda(1520)$  as determined in different decay channels, (b) Comparison of the total cross sections for the dominant decay channel  $\Lambda(1520) \rightarrow pK^-$  (see (a), squares) gained via integration of the differential cross sections  $d\sigma/dt$  (upward triangles), and the averaged and integrated differential cross sections (downward triangles) from the four decay channels presented in (a).

## SAPHIR



Fig. 14. Differential cross section for the reaction  $\gamma p \rightarrow K^+A(1520)$  determined via the decay channel  $A(1520) \rightarrow pK^-$  in four photon energy bins as a function of  $|t - t_0|$ ;  $t_0$  denotes the minimal kinematically allowed squared four-momentum transfer, which was calculated on an event-by-event basis.